An extension of Feller’s strong law of large numbers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on the Strong Law of Large Numbers

Petrov (1996) proved the connection between general moment conditions and the applicability of the strong law of large numbers to a sequence of pairwise independent and identically distributed random variables. This note examines this connection to a sequence of pairwise negative quadrant dependent (NQD) and identically distributed random variables. As a consequence of the main theorem ...

متن کامل

MARCINKIEWICZ-TYPE STRONG LAW OF LARGE NUMBERS FOR DOUBLE ARRAYS OF NEGATIVELY DEPENDENT RANDOM VARIABLES

In the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. Let be a double sequence of pairwise negatively dependent random variables. If for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). In addition, it also converges to 0 in ....

متن کامل

On the Strong Law of Large Numbers

N lim 1( 1: f(nkx)) = 0, N-N k_l or roughly speaking the strong law of large numbers holds for f(nkx) (in fact the authors prove that Ef(nkx)/k converges almost everywhere) . The question was raised whether (2) holds for any f(x) . This was known for the case nk=2k( 2) . In the present paper it is shown that this is not the case . In fact we prove the following theorem . THEOREM 1 . There exist...

متن کامل

marcinkiewicz-type strong law of large numbers for double arrays of negatively dependent random variables

in the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. let be a double sequence of pairwise negatively dependent random variables. if for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). in addition, it also converges to 0 in . the res...

متن کامل

Game-theoretic versions of Kolmogorov’s strong law of large numbers

We prove two variants of Kolmogorov’s strong law of large numbers in a completely worst-case framework, eschewing any probabilistic assumptions. The first variant is an assertion about a game involving the Bookmaker predicting the values of unprobabilized random variables; in an intuitive sense it is much stronger than the usual strong law of large numbers for martingales. The second variant is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics & Probability Letters

سال: 2018

ISSN: 0167-7152

DOI: 10.1016/j.spl.2017.09.011